Evaluation and comparison of gross primary production estimatesfor the Northern Great Plains grasslands
نویسندگان
چکیده
Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Crossvalidation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results. In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel cropland components. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability
In the Great Plains, grassland carbon dynamics differ across broad gradients of precipitation and temperature, yet finer-scale variation in these variables may also affect grassland processes. Despite the importance of grasslands, there is little information on how fine-scale relationships compare between them regionally. We compared grassland C exchanges, energy partitioning and precipitation ...
متن کاملEvapotranspiration from Northern Semiarid Grasslands
Proper grazing management reduces ET from grasslands by reducing transpiration losses and grazingManagement of forage production for livestock grazing on semiarid induced surface energy relationships that reduce evapograsslands depends on water availability. Evapotranspiration (ET) ration (Svejcar and Christiansen, 1987; Wraith et al., was measured using the Bowen ratio energy balance method on...
متن کاملInorganic Nitrogen Supply and Dissolved Organic Nitrogen Abundance across the US Great Plains
Across US Great Plains grasslands, a gradient of increasing mean annual precipitation from west to east corresponds to increasing aboveground net primary productivity (ANPP) and increasing N-limitation. Previous work has shown that there is no increase in net N mineralization rates across this gradient, leading to the question of where eastern prairie grasses obtain the nitrogen to support prod...
متن کاملWind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development
Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to r...
متن کاملA Comparison of Satellite-Derived Vegetation Indices for Approximating Gross Primary Productivity of Grasslands
Gross primary productivity (GPP) is a key component of ecosystem carbon fluxes and the carbon balance between the biosphere and the atmosphere. Accurate estimation of GPP is essential for quantifying plant production and carbon balance for grasslands. Satellite-derived vegetation indices (VIs) are often used to approximate GPP. The widely used VIs include atmospherically resistant vegetation in...
متن کامل